打印机

人工智能减少缺陷3D打印过程控制l人工

发布时间:2023/3/30 18:17:58   

如今,我们已经习惯于看到AI接管越来越多的任务——不仅在我们的日常生活中,而且在医疗应用或工业生产中。人工智能的发展取得了很大进展。现在可以通过人工智能预测生产中的组件故障或从图像中提取信息以在几分之一秒内执行干涉任务。

在过去十年中,关于AM-增材制造加工过程监测的论文和专利数量急剧增加。这是因为AM-增材制造加工过程是一个动态过程,更是个数字化的过程,在构建过程中具有改进的潜力。

根据3D科学谷的市场研究,人工智能在每个特定领域发挥着越来越重要的作用,包括:缺陷检测和纠正、在构建过程中和构建之后减少残余应力和故障、原位计量和设计精度、微结构设计、合金设计和优化。

人工智能赋能3D打印过程控制

3D科学谷白皮书

建立工艺-结构-性能-使役性能(PSPP)

在《增材制造设计(DfAM)指南》这本书中,援引了AM零件质量影响因素的石川图,在石川图中详细的举出了影响加工质量的多种因素,仅仅是激光扫描过程,就包括了扫描线长度,扫描线种类,外轮廓,内轮廓,扫描方式,扫描速度,光束矫正,收缩补偿,扫描线顺序,填充间距,填充方向,激光功率,(离)聚焦,表面填充参数,偏移等等。可见要通过人的经验来驾驭和平衡多种影响加工质量的变量是非常难的。

根据中国工程院院刊Engineering上的《基于神经网络的机器学习方法在3D打印中的应用》,使用神经网络建立工艺-结构-性能-使役性能(PSPP)方面会出现爆发性的增长,因为与其他方法和模型相比,神经网络在复杂模型识别中具有内在优势。

人工智能赋能3D打印

3D科学谷白皮书

目前人工智能用于3D打印过程控制主要是聚焦于控制孔隙(密度)、局部缺陷、过程中产生的内应力、设计和尺寸精度、微观结构变化等。

控制这些参数中的任何一个都是一项具有挑战性的任务,因为影响它们的变量数量是巨大的。不仅可控的工艺参数会影响结果,几何形状、材料类型、设计类型、零件形式和环境因素等其他因素也会影响结果。

只有某些变量可以控制,而其他变量通常充当噪声或附加参数,其影响只能随着时间的推移而学习。根据中国工程院院刊《基于神经网络的机器学习方法在3D打印中的应用》一文,传感器用于精确地检测光学、热学、声学和超声波信号,并提供有价值的见解来加深对AM的理解。然而,搭建可靠的传感器系统仍然存在巨大的困难。例如,安装在打印机内部的传感器必须能够在恶劣的环境中正常工作很长时间。在EBM技术中,由真空环境中的高能电子束产生的金属蒸气可能会破坏相机镜头。此外,传感器系统必须足够灵敏以捕获熔池的中心位置,因为激光的扫描速度通常非常快。从这个角度来看,AM的快速发展非常需要优质的传感器系统作为支撑。

由于影响过程的参数数量和存在的可变性,科学家需要开发与ML算法一起使用的原位监测系统,以在本地学习和改进每个过程。这在标准化方面很重要。为不同工业部门制造的材料必须能够通过用于这些应用的标准。例如,航空航天应用的质量标准非常严格。在粉末床工艺中,大量工作集中在使用不同技术进行原位温度测量。迄今为止使用的大多数技术都依赖于热成像或光学成像。最先进的方法是超快同步加速器X射线成像,可以提供有关表面和深度过程的信息。

3D科学谷在《西南交通大学采用原位X射线成像表征增材铝合金多缺陷主导裂纹扩展行为》一文中分享过西南交通大学在增材材料疲劳性能评价方向取得重要进展,并在国际疲劳领域顶级期刊InternationalJournalofFatigue上发表题为“InsituX-rayimagingoffatiguecrackgrowthfrommultipledefectsinadditivelymanufacturedAlSi10Mgalloy”的学术论文。

根据中国工程院院刊《基于神经网络的机器学习方法在3D打印中的应用》,传感器硬件需要由功能强大的操作软件所控制。控制软件的基本模式包括监视、记录、分析和存储数据。在一般情况下,例如在SLM过程期间,一旦硬件将捕获的熔池图像传递给软件,它就可以计算温度曲线并提取热量和尺寸度量以进行下一步的分析。其他令人

转载请注明:http://www.aideyishus.com/lktp/4104.html

------分隔线----------------------------